随着光通信技术的进步,接入网已由普通模拟用户环路逐步演变成光接入网OAN,另一方面,由于SDH技术的成熟性和先进性,也使其逐步由长途网到中继网,最后在接入网上得到广泛应用。传输网络是所有业务层包括支撑层的平台,而SDH技术是这个平台的灵魂。在接入网中,为满足组网的灵活性和电路的实时调配,SDH技术广泛应用于用户端与局端之间,以完善的环保护功能为“最后一公里”提供安全保障。目前看来,无论是PSTN网络还是移动的基站传输,接入网传输系统仍然以提供TDM业务传输为主。
从另一个角度来看,自从接入网内置SDH155开始承担光纤接入网的传输主体设备后,目前速率已满足不了窄带接入网的需求,用户急需提高传输带宽。同时为了满足大量引入的多种宽带业务与宽带接入手段,非常有必要提高接入网传输的传输速率、改善传输效能,构建新一代城域/接入网多业务传输平台。尽管接入网所采用的接入技术多种多样,用户需求千差万别,网络结构变化多端,但始终需要一个具有高度可靠性的传输网络进行承载。SDH网络以其强大的保护恢复能力以及固定的时延性能在城域网络中仍将占据着绝对的主导地位。当然,网络业务的多样化,给城域传输网提出了新的挑战,为了避免多个重叠的业务网络,降低网络设备投资成本,简化网络业务的部署与管理,城域光传输网络必将向多业务化方向发展。新一代的光接入网传输系统也将朝着多业务化和智能化发展。
未来城域接入网中的传输系统
随着骨干传输容量不断增大,城域传输网络的接入能力也多样化。但以IP为主的网络业务仍然是不可预知的,这需要传输网络具有更好的自适应能力,而这种自适应能力不仅仅是网络接口或网络容量的适应能力,而且要求网络连接的自适应能力。总的来说,低成本、灵活快速的完成运营商端局到用户端的业务接入和业务收敛是对未来城域网接入系统的主要需求。从技术上来看,接入层的相对带宽需求较小,需要提供IP、TDM,可能还有ATM等综合业务传送。以SDH系统为基础并能够提供IP、ATM传送与处理的系统(包括TDM、IP与ATM接口,甚至包括IP和ATM交换模块)将是解决接入层传送的主要方法,这种方式可廉价地在一个业务提供点(POP)上提供高质量专线、ATM、IP等业务的接入、传送和保护。简单地讲,这种采用SDH传输以太网等多种业务的方式就是将不同的网络层次的业务通过VC级联的方式映射到SDH电路的各个时隙中,由SDH网络提供完全透明的传输通道,从物理层的设备角度上看是一个集成的整体。这种解决方案可以大幅度地降低投资规模,减少设备占地面积,降低功耗,进而降低网络运营商的运营成本。同时,提供多业务的能力还可以使网络运营商能够快速地部署网络业务,提高业务收入,增强市场竞争能力。从网络结构来看,接入层传输节点分布广、数量多,要求低成本、高环境适应能力;需支持复杂组网。
采用光纤直连组网通常指利用路由器、ATM交换机、以太网交换机等通过独享光纤带宽的简单组网技术,包括星型(树型)、环形、网格型等组网方式,因为是纯数据接入设备,带宽独享,浪费了大量光纤资源,特别是树型和网格型,对光纤的需求大,随着节点的增加,给运营商带来很大压力,无法高效接入大量应用的TDM业务。如果采用E1电路仿真,一方面成本非常昂贵,用户无法承受;另一方面性能差,无法满足像移动与联通等运营商组网的需求。因此该方案也只适用于新建的纯数据网络。因此在新型接入网组网中,根据业务用户的重要性,采用综合接入SDH设备进行环形、链形、树形进行组网,由于星型组网会需要大量的光纤,保护能力差,建议选择环形、环形加分叉等形式,分叉方法可采用SDH、PON/APON/EPON等。总的来说,新型多业务接入传输系统除具有SDH的基本功能外,还具有多种业务的接入功能,支持数据业务的透明传输,并提供点到点与点到多点的业务汇聚功能,不仅具有数据优化传输升级能力,提供业务的带宽管理能力,而且具备多种业务互通的平滑升级能力。
图2:下一代多业务接入系统组网示意图
目前,对于各运营商的城域传送网,应从采用单纯的SDH设备转向下一代基于SDH的多业务传送平台(MSTP),目前国标《基于SDH的MSTP技术要求》已经成熟,引起了各方面的极大关注。MSTP可以基于多种线路速率实现,包括155/622Mb/s、2.5Gb/s和10Gb/s等。一方面,MSTP保留了固有的TDM交叉能力和传统的SDH/PDH业务接口,继续满足话音业务的需求;另一方面,MSTP提供ATM处理、Ethernet透传以及Ethernet L2交换功能来满足数据业务的汇聚、梳理和整合的需要。
MSTP可以提供ATM处理模块,针对ATM业务接入,比如多点DSLAM接入到ATM骨干交换机的应用场合(还包括未来3G的BTS接入到NodeB、或NodeB接入到RNC的应用场合),通过VP/VC信元交换和统计复用功能,将在若干节点分别接入的多个155Mb/s时隙收敛到SDH环的一个155Mb/s时隙,实现1:N业务收敛功能,节省了带宽资源,同时所有业务可以共享ATM的VP-Ring保护;如果SDH的通道或复用段保护启用,则可以屏蔽掉ATM的VP-Ring保护;此外,ATM处理模块还可以提供PVC专线和ATM组播业务。
MSTP可以提供Ethernet的透明传送功能,将来自用户以太网的信号不经过L2交换,直接映射到SDH的虚容器(VC)中,然后通过SDH网络进行点到点传送。目前,10Mb/s、FE甚至GE业务可以通过多种途径在网络中传送,比如10Mb/s和FE业务可以采用VC-12或VC-3的虚级联方式承载,而GE业务则可采用VC-4或VC-3/STS-1连续级联的方式来承载。Ethernet over SDH的映射协议除采用PPP/HDLC或LAPS外,也可支持通用成帧规程GFP。
除透传功能外,MSTP还提供L2交换功能,即在一个或多个用户的以太网接口与一个或多个独立的基于SDH VC-N的链路之间,提供基于Ethernet MAC的交换,实现基于端口的VLAN、基于ID Tag的VLAN和虚拟网桥(Virtual Bridge)功能、全双工流量控制、带宽共享、端口汇聚以及相应的STP处理和保护等。
MSTP中新型的链路容量自动调整策略,即LCAS,可以实现:即使SDH的一些VC-N通道发生故障或出现告警指示信号AIS,可以根据相互的握手协议自动降低承载带宽,同时所承载的数据业务不能有太大的损伤,即丢包率和时延可以降到最低程度;如果告警消失或故障恢复,所承载的数据业务相应要恢复到最初的配置带宽。
从本质上来讲,弹性分组环RPR是跟SDH和现行MSTP全面竞争的一种技术,但MSTP可以一定程度融合RPR技术,比如将RPR设计成为MSTP的一种功能模块,从而实现带宽的统计复用、公平的带宽分配、严格的业务分级CoS和QoS以及真正意义上的用户隔离功能。此外,RPR具备自己专用的保护策略,比如环回和主导方式,如果要与SDH保护协同起来,同理需要拖延时间机制来保证。
下一代SDH产品发展方向
关于下一代SDH产品的发展方向和相应的研发策略是电信领域的研究热点,不同厂家、不同技术背景的研究人员对它有着不同的认识和理解,不同的电信产品制造商在产品研发时基于各自的理解有着不同的技术路线,不同的电信运营商根据各自的网络情况、业务范围和企业发展目标也有着不同的发展策略。概括地讲,下一代SDH产品存在着三个不同的发展方向,这三个方向分别针对SDH技术在电信网络中向高端、中端、低端传输市场的渗入与扩张。
首先,下一代SDH产品将向高端传输产品市场靠拢,按照SDH技术的既有路线向高容量和高速率的方向发展。2002年颁布了SDH在40G级别上的标准,虽然这个技术在工程应用中会遇到来自WDM技术的竞争,但是其应用前景还是相当乐观的。由于新标准刚刚颁布,工程应用实例尚不多见,相应的测试和维护手段也不完善。但是可以相信电信设备制造商对这一方向的跟进速度会很快。
其次,下一代SDH产品另一个发展方向是立足于城域网应用领域,在SDH产品的基础上集成对多种业务(主要是以太网业务和ATM业务)的支持功能,实现对城域网业务的汇聚。这种设备就是MSTP设备,由于它有着许多突出的优点因此受到了广泛的关注和研究.目前关于MSTP设备的研发项目纷纷上马,获得电信市场入网证的MSTP产品也越来越多,利用MSTP设备构建的成功工程应用也越来越多。